中国激光

第14卷 第9期

直径为 320 mm 的大孔径高功率碘原子激光放大器·

陈时胜G.Brederlow, E.Fill, J.K.Witte, S.Witkowski(中国科学院上海光机所)(西德马普量子光学所)

提要:研制成一台直径为 \$320 mm、长1.4m的高功率碘原子激光放大器,电能转换效率为 0.8%。沿放大器的横截面上,反转粒子数密度分布不均匀性小于 4%。由热引起的折射率改变量小于 2×10⁻⁷。实验结果表明,经验公式 P·D=20000 (Pa·cm)适用于放大器直径 D 及工作气体压力 P 的选择。

A high power atomic iodine amplifier with an aperture of 320 mm

Chen Shisheng

(Sanghai Institute of Optics and Fine Mechanics, Academia Sinica, Shanghai)

G. Brederlow, E. Fill, J. K. Witte, S. Witkowski

(Max-Planck Institute of Quantum Optics, D-8046, Garching, b. Munich, F. R. G.)

Abstract: We have developed high power atomic iodine laser amplifer with an aperture of 320 mm and length of 1.4m. Its conversion efficiency reaches to 0.8%. The cross section of the amplifer is better than 4%. The diffraction index change during the pumping period is less than 2×10^{-7} . Experimental results show that the empirical formula $D \cdot P = 20000$ (Pa.cm), in which P is the pressure of active material C_3F_7I inside the laser tube and D the diameter of an amplifer, is suitable for choosing parameters of amplifers.

通常 net=7.5×10-019。由于击波 前影

大器的有用面积将减少为正一至而在

直径为d=80 cm,因泵脉宽T。=10 us,则 K

光分解高功率碘原子激光器已经发展成 为用于激光核聚变最重要的激光器件之一。 在西德马普量子光学研究所,一台输出能力 为 200 J/300 ps 的高功 率 碘 原 子 激 光 器 Asterix III已为激光等离子体物理实验运转 多年^{D1}。目前,我们正在研制一台输出能力 为 2kJ/300 ps 的 高 功 率 碘 原 子 激 光 器 Asterix IV。这台新激光器的终端放大器将 是一台具有孔径 φ320 mm、长 12 m 的放大 器,它由八段组成。预计输入 200J/300 ps时, 该放大器将放大到 2kJ/300 ps 的 输 出。每 一段放大器将由 12 支内径为 27 mm、长 120 cm 的短脉冲闪光灯泵浦。本文报道这样一 台放大器的预演实验结果。

• 本工作是在西德马普量子光学研究所进行的。

收稿日期:1986年5月16日。

法副同事

^{118.0}章 ¹¹二、设计考虑

设计放大器时考虑了如下因素:

 在放大器输出端的光学部件损伤阈值。高功率碘原子激光器输出能量(或功率) 密度主要受激光管窗口的损伤阈值限制。其最大能量负载密度由如下经验公式表示^[23]:

$$d_{eff} = 2 \sqrt{\frac{E_{out}}{\pi e_m}}$$

式中 e_m 为损伤阈值能量的一半,对镀有减反 膜的 BK-7 玻璃,在波长 $1.3 \mu m$, $e_m = 4 J/$ om²·ns。因此,对输出为 2 k J/ns 的放大器, 其有效直径 $d_{eff} = 32 cm$ 。由于激光管的实际 面积在泵浦期间受击波的影响,于是激光放 大器的真正直径应为^[2].

 $d = d_{eff} + 2a_sT_p + \varphi L$,

式中 L 为放大器的长度; a_s 为击波的速度, 对缓冲气体为 Ar 的情况, $a_s = 450 \text{ m/s}; T_p$ 为光泵时间宽度,在我们的实验情况下, $T_p =$ 11 μ s; φ 为进入放大器的被放大激光束的发 散角并取为 $\varphi = 1 \text{ mrad}_o$

放大器的长度由下式确定:

 $L = e_{st}/u \cdot P_{RI}(\text{cm})$

式中 e_{st} 为放大器的激光能量储存密度,通常 $e_{st}=6\sim7 \text{ J/om}^2$; u 为特定的反转能量密度, 通常 $u\sim0.1 \text{ J/Pa}\cdot\text{cm}^3$; P_{RI} 为激活介质 C_8F_7I 的工作气压,并且 P_{RI} 由下面经验公 式给出^[22]:

 $P_{RI} \cdot d = 200 \text{ cm},$

根据上面给出的公式,具有2kJ/ns输出能力的碘原子放大器的几何尺寸应为:

直径 d=33 cm, 长度 L=12 m, 激活介质 C_3F_7I 的工作气压为 $P_{RI}=600$ Pa。

2. 放大器的泵浦能量

泵浦所需的电能与放大器整个体积内的 激光储存能量 *E*st 表示为:

 $(E_{st})_{tol} = \eta_{el} E_{el},$ 式中 η_{el} 为电能转化为激光储存能量的效率, • 514 •

通常 $\eta_{el} = 7.5 \times 10^{-3123}$ 。由于击波的影响, 放 大器的有用面积将减少为 $K = F_{eff}/E_{tolo}$ 对 直径为 d = 30 cm, 闪泵脉宽 $T_p = 10 \,\mu s$, 则 K= 0.8。因此, 我们有:

并且

 $e_{st} = (e_{out} - e_{iu}) / \eta_{eL},$

 $E_{eL} = e_{st} F_{eff} / K P \eta_{eL},$

式中 η_{eL} 为激光储能的释放效率。计算表明, 当输入放大器的激光能量密度为 $e_{iu}=0.5J$ /cm² 时,效率 $\eta_{eL}=0.5$; 当输入到放大器的 激光能量密度为 $e_{in}=1.5J/cm^2$ 时,效率 η_{eL} =0.6^[33]。由于受放大器激光管光学窗口玻璃 的破坏阈值的限制,输出能量密度负载为 3.5J/cm²。因此,放大器的储能密度 $e_{st}=6J$ /cm²。对有效直径 $F_{eff}=30$ cm 的放大器,要 求的总的泵浦电能为:

 $E_{eL} = \theta_{st} F_{eff} / K P \eta_{eL} = 880 (kJ)$

3. 防止放大器自激振荡

在碘原子激光放大器中,激发态的碘原 子 I* 的受激发射截面 σ 随着激光管中所填 充的惰性气体(例如 Ar、SFe 或 He)的压力 增大而减小。克服自振荡最有效而简便的办 法是增大填充惰性气体的压力 P, 以减小受 激原子的受激发射截面 σ。在我们实验条件 下,最高气压一般保持在低于7atm以下。选 用的惰性气体压力为 6 atm, 相应的受激发 射截面 σ~10-19(cm2)。对于放大器工作气 体压力(CsF17I)为600Pa,相应的分子数密 度为: N≈2.2×1019 (om-3)。 碘原子属于三 能级系统. 只有50%的激发态原子对激光作 用有贡献。对这样的放大器,小信号的激光 增益为 $G_{ss} = \Delta N \cdot \sigma \cdot L = 800$ 。这是非常高的 增益值。必须十分小心安放整个器件的光学 元件,以免产生各放大级间的耦合。

三、放大器概述

放大器的激光管由一根壁厚5mm、直径 \$20m、长1.4m的石英管构成。为减小

内壁反射引起的激光储能下降并改进光泵照 明在激光管内分布的均匀性,用化学方法将 管内壁腐蚀变毛。激光管两端由10°放置的 平板玻璃通过"O"型圈真空密封。

放大器由 12 支直管氙闪光灯泵浦。灯管 长 115 cm,内径 \$\phi 27 mm, 壁厚 2 mm, 氙气 压 150 Torr。经过大约 30~40 次闪光后,将 Xe 气排空后充新的纯 Xe 气体。实验表明, 这种方式可使闪光灯的紫外区发光效率保持 长期稳定。

在碘原子激光器中产生的碘分子对激光 产生强烈的猝灭作用,并且吸附在管壁上。在 下一次闪光时,碘分子强烈吸收泵浦光并产 生强击波往管中央运动。击波会严重破坏激 光介质的光学均匀性。为了减小受击波干扰 范围,应力求泵浦脉冲具有短的放电时间。为 此,采用低电感电容供电。除采用同轴电缆 放电外还直接采用反射器作放电电流 迴路。 放电是通过马克斯发生器产生的高压脉冲触 发火花隙来完成的。图1示出了放电框图。在 图的右上角同时示出了放电电流示波图。从 示波图中看到,放电只是近似阻尼。放电的 时间半宽度约为 10 μs。

图1 脉冲 Xe 灯放电框图

滅韓音

上面已指出过,每次闪光后产生的碘分 子是一种有害的衍生物。于是,在每次闪光 后放大器中产生的碘分子都经过一个闭合的 气体循环系统循环。经循环后,大部分的碘 分子将会被冻结在一个低温容器壁上。

四、结果与讨论

1. 放大器的激光储能

在稳态条件下,自由振荡方式下工作的 振荡器,其激光储能可表示为:

$$\begin{split} E_{st} = & \frac{\ln R^{-1} + \ln T^{-4}}{2\sigma_{3\sim 4}} \times \frac{\sum g_{F'} \cdot h\nu \cdot F}{g_{F'=3}} \\ & + \frac{1 - T^2 \sqrt{R}}{T - (1 - \sqrt{R})} E_{L_{r}} \end{split}$$

式中, hv 为波长1.315 µm 的光子能量;

F 为激光管的有效横截面积;

T 为激光管两端窗口的透过率;

σ_{3~4} 为激发态碘原子的受激发射截 面;

g 为激光能级的简并度;

EL为激光输出能量。

上式右端第一项表示激光振荡的阈值能量。 在我们的实验条件下,T=0.99;于是

$$\frac{1 - T^2 \sqrt{R}}{T(1 - \sqrt{R})} \approx 1$$

亦即 $\frac{1-T^2\sqrt{R}}{T(1-\sqrt{R})}E_Lpprox E_{Lo}$

我们分别测量了采用 U 字型 及 椭 圆 柱 型反射反射器情况下,放大器的激光储能。结 果分别示于图 2 中的曲线 A 与曲线 B_{0} 实验 时的工作介质 $C_{3}F_{7}I$ 的压力为 680 Pa,填充 缓冲气体 Ar 的压力为 $P_{Ar} = 50000$ Pa。在该 条件下,有^[2]

 $\sigma_{3\sim4}^{-1}=2.02\times10^{+18}(\text{cm}^2), g_{F'=3}=7,$ $\Sigma g_{F'}=12_{\circ}$

由此得到计算的阈值能量 $E_{th}=280$ J。从图 2 所给出的实验阈值能量(直线(a)或(b)与 纵坐标的截距) $E'_{th}=275$ J。理论阈值能量与 实验阈值能量两者符合甚好。

放大器在采用 U 字型反射器时,其激光 储能为 *E*_{st}=480J。图 2 的结果还表明,在大 孔径放大器情况下,采用 U 字型反射器比采 用椭圆柱型反射器好。用几何作图法画出氙 灯光线在两种不同形状反射器上的反射轨

图 2 输出能量与泵浦能量的关系 曲线(a) U型反射照明器;曲线(b) 椭圆照明器

迹,结果表明,在椭圆反射器情况下,有更大 比例的光线经反射后要通过氙灯管柱才进入 放大器。氙灯在短脉冲大电流放电下,对自 身辐射近似为光学厚介质。这就是椭圆柱反 射器效率较 U 字型反射器低的原因。

2. 小信号增益

激光放大器的储能密度 E_{st} 与小信号 增 益有如下关系^[2]:

 $E_{st} = h \nu \Delta N L$,

 $G_{ss} = \exp(\sigma \Delta NL),$

式中, Est 为激光储能密度(J/cm²); *dN* 为反 转粒子数密度; *L* 为激光放大器介质长度; *σ* 为激发态碘原子的受激发射截面; Gss 为小信 号增益。

根据上述两式, 我们得: E_{st} = ^{hν}/_σ ln G_{sso} 图 3 给出了测量小信号 增益 的实验安 排。右端同时给出两种脉冲的示波图照片。输 出能量为 250 mJ、脉宽为 80 ns 的 KrF₂ 准 分子激光泵浦长 15 cm、内充 100 Pa 压力纯 C_sF₇I 气体的石英管。该石英管被置于激光 共振腔内, 腔的一端为在 1.315 μm 波长上 的全反射的凹面镜, 曲率半径为 2 m; 共振 腔的另一端为反射率 80% 的平面镜。一个直 径为1mm的光阑置于靠近共振腔全反射镜 一端,以实现单横模输出。测量小信号增益 的激光器输出脉宽为10ns(FWHM)、单脉 冲能量2mJ的激光。一块反射率为50%的 平面镜将输出光束取样后,一束直接反射到 锗真空光二极管,另一束通过待测放大 器后再被反射到同一个真空光二极管。参考 脉冲与测量脉冲经适当延迟后在示波器 Tektronix7104上显示。

根据小信号增益的测量结果,放大器的 激光储能可表示为:

 $E_{st} = 2\pi \int_{0}^{R} \Delta N(r) \cdot r dr$ $= \frac{h\nu}{\sigma} \cdot F \ln G_{ss},$

式中 F 为放大器的横截面积。上式计算中已 假定反转粒子数密度在沿放大器横截面上的 分布是均匀的。

实验测量表明, 在采用 U 字型照明器情况下, 当光泵能量为 96 kJ(相应于图 2 中, 光泵电压为 40 kV), 放大器的激光储能为 E_{st} = 750 J。这与上述"振荡器"法所得的结果 E_{st} = 740 J 相当一致。

 泵浦均匀性及由光泵引起的 折射 率 变化

光泵期间,由于附着在激光管内壁上的 少量碘分子 Ⅰ。吸收了泵浦光后将挥发并向 管中央运动,并压缩管内气体从而产生击波, 介质受压缩而产生折射率梯度。此外,由于

图 5 edit mo bioit 泵浦: 40 kV, 96 kJ。PC.F.I=6.8 Pa, PAr=500 Pa t(us) 125 150

6 泵浦: 40k V, 96 kJ, , PC.F.I=16 Pa, PAr=500 Pa

图

气体 C₃F₇I 的光解作用将会释热, 管内气体 受热。倘若光泵强度在激光管内分布不均匀, 便会造成局部气体被加热, 进而引起折射率 梯度。

为了采用干涉法测量光泵期间放大器折 射率的改变(如图4所示),在共焦望远镜的 公共焦点上安置有直径 d0.3 mm 的滤波针 孔。光束扩束成 \$65 mm。经剪切干涉仪后 的探针光束被成像在一台阴极射线高速照相 机上并被记录。图5与图6分别给出了放大 器在不同工作条件下的干涉图照片。

图5与图6的干涉图表明,在光泵期间 10 µs 内, 由放大器介质折射率变化引起的 光干涉条纹变化量小于干涉仪的灵敏度 (0.1λ)。于是,相应的折射率改变量 Δn 可表 示为:

$\Delta n \times L = 0.1\lambda$,

式中 $\lambda = 0.5 \mu m$ 为探针光束波长: $L = 2 \times$ 10³ mm 为探测光束通过放大器两次的总光 程。由此求得 dn=1×10-7。 对一台总长为 12m的放大器而言, 总的光程变化量约为 0.12%。这是很小的变化量。

此外,从图5与图6还看到,在光泵后约 50 µs, 干涉条纹开始变化。从此可推算出击 波在激光管内的传播速度约为6×104 cm/s。 此外, 击波速度随激光管内工作气体 C3F71 气压的增大而增加。这表明, 附着于管内壁 上的碘分子 I2 在工作气体 C3F7I 增加压力 而增多。

小信号增益沿截面上的均一性是反转粒 子数密度分布均匀性的量度,也反映光泵分 布的均匀性。

测量结果表明,工作气体 C₃F₇J 有一个 最佳的压力值即为 Pc.F.I=6 Pa。在此条件 下,小信号增益在截 面上的不均匀性为 0.06。当C_sF₇I 气压从 600 Pa 减小到 480 Pa 时,中心区的增益略高于管边沿区,这表 明照明器在管轴区附近有会聚。当气体 CaF7I 压力达到 1100 Pa 时, 中心区 增益明 显变小,且这时增益呈环状分布。实验结果 还表明, C_aF₇I 的工作气压应保持在最佳气 压点上,其起伏不得大于或小于 200 Pa。因 此,盛有液态 C_sF₇I 介质的低温容器的温控 必须保持在 ±2°C 值上。

老 献 Ż

- G. Brederlow et al.; IEEE J. Quant. Electr., [1] 1980, QE-16, 122.
- [2] G. Brederlow, E. Fill, J. K. Witte; "The High-Power Iodine Laser", Springger Series in Optical Sciences, Vol. 34, 1982.
- [3] T. Uchiyama, K. J. Witte; IEEE J. Quant. Electr., 1982, QE-18, 885.